

Interaction Effects in MPlus

Today's goal:

Teach how to test condition*factor and factor*factor interaction effects

Outline:

- Overview of interaction effects and approaches
- The random slopes approach
- The multiple groups approach

of interaction effects

What is the combined effect of x1 and x2 on y?		x1 = low	x1 = high
Possibilities: Additive effect Super-additive effect	x2 = low	0	5
Sub-additive effect Cross-over	x2 = high	5	10

What is the combined effect of x1 and x2 on y?		x1 = low	x1 = high
Possibilities: Additive effect Super-additive effect	x2 = low	0	5
Sub-additive effect Cross-over	x2 = high	5	15

What is the combined effect of x1 and x2 on y?		x1 = low	x1 = high
Possibilities: Additive effect	x2 = low	0	5
Super-additive effect Sub-additive effect Cross-over	x2 = high	5	5

What is the combined effect of x1 and x2 on y?		x1 = low	x1 = high
Possibilities: Additive effect	x2 = low	0	5
Super-additive effect			
Sub-additive effect Cross-over	x2 = high	5	0

Additive effect

x1	5.000	
x2	5.000	
x1*x2	0.000	(n.s.)

Super-additive effect

x1	5.000	
x2	5.000	
x1*x2	5.000	(sig)

Sub-additive effect

x1 5.000 x2 5.000 x1*x2 -5.000 (sig)

Cross-over effect

x1 5.000 x2 5.000 x1*x2 -10.000 (sig)

This is easy in regressions Just multiply the dependent variables! y ~ x1*x2

More difficult in SEM

Depends on type of variables: manipulation * manipulation manipulation * factor factor * factor

manipulation * manipulation is easy:

Just create the dummies!

See SEM slides and homework for an example

manipulation * factor:

Multiple groups model or predicted random slopes model

factor * factor:

Predicted random slopes model

"Predicted random slopes model" Pro: Works for all types of variables Con: Cannot use categorical indicators Con: Can take a long time to estimate

- "Multiple groups model"
 - Pro: Easier to estimate
 - Pro: Can sometimes use categorical indicators*
 - Con: Does not work for factor * factor interactions

Random slopes approach

for factor*condition and factor*factor interaction effects

Under ANALYSIS:

- Specify random slopes (type = random)
- Specify integration (algorithm = integration)

Under MODEL:

- Specify the moderated effect as random: s | y on x;
- Regress the slope on the moderator: s on m;
- Add main effect of moderator: y on m;

Example: is the effect of perceived control on perceived recommendation quality dependent on understandability?

Equivalent: is the effect of understandability on perceived recommendation quality dependent on perceived control?

slopes1.inp

Specify the model as UVI

Under model, add:

- s | quality ON control;
- s ON underst;
- quality ON underst;

In regression terms, this would simply be: quality ~ control*underst

SATISF ON				
QUALITY	0.401	0.097	4.114	0.000
CONTROL	-0.924	0.155	-5.979	0.000
S ON				
UNDERST	0.047	0.081	0.579	0.563
QUALITY ON				
UNDERST	0.061	0.078	0.776	0.438
UNDERST ON				
CITEM	0.348	0.160	2.180	0.029
CFRIEND	0.474	0.164	2.888	0.004
CGRAPH	0.535	0.135	3.969	0.000
Intercepts:				
S	-0.771	0.111	-6.962	0.000

slopes1a.inp

Under model, add: s | quality ON underst; s ON control; quality ON control;

This model is equivalent

SATISF (QUALITY CONTROL	0N 0. -0.	280 0 916 0	0.106 0.158 -	2.655 5.814	0.008 0.000
S (CONTROL	ON 0.	094 0	0.119	0.790	0.429
QUALITY (CONTROL	ON -1.	094 0) . 347 –	3.153	0.002
UNDERST (CITEM CFRIEND CGRAPH	ON 0. 0. 0.	257 Ø 367 Ø 452 Ø	0.153 0.169 0.139	1.686 2.172 3.247	0.092 0.030 0.001
Intercepts: S	0.	056 0	0.110	0.506	0.613

Example: is the effect of perceived control on perceived recommendation quality dependent on the control condition?

slopes2.inp

Under model, add:

s | quality ON control; s ON citem cfriend; quality ON citem cfriend;

SATISF	ON				
QUALITY		0.373	0.092	4.041	0.000
CONTROL		-0.909	0.159	-5.733	0.000
ς	ON				
CTTEM		-0.108	0.171	-0-634	0.526
CFRIEND		0.565	0.165	3.418	0.001
QUALITI	UN	0 050	0 150	0 220	0 710
		0.002	0.179	0.529	0.742
CFRIEND		0.288	0.1/2	1.6/4	0.094
UNDERST	ON				
CITEM		0.327	0.160	2.044	0.041
CFRIEND		0.486	0.161	3.019	0.003
CGRAPH		0.509	0.134	3.815	0.000
Intercepts:					
S		-0.955	0.145	-6.583	0.000

Multiple group approach

for factor*condition interaction effects

Under VARIABLE:

Specify the moderating manipulation as a "grouping" variable: grouping = cctrl(0=none 1=item 2=friend)

- Add a MODEL section for all groups except the baseline Model item:
 - Model friend:

Add corresponding labels to each MODEL to restrict the moderation

Example: is the effect of perceived control on perceived recommendation quality dependent on the control condition?


```
multi.inp
```

```
MODEL:
satisf BY s1* s2-s7;
quality BY q1* q2-q6;
control BY c1* c2-c4;
underst BY u2* u4-u5;
satisf-underst@1;
satisf ON quality control (1-2);
quality ON control (p1);
control ON underst (4);
underst ON cgraph (5);
MODEL item:
satisf ON quality control (1-2);
quality ON control (p2);
control ON underst (4);
```

underst ON cgraph (5);

[satisf] (p4);

[control] (p5);

```
MODEL friend:
  satisf ON quality control (1-2);
  quality ON control (p3);
  control ON underst (4);
  underst ON cgraph (5);
```

```
[satisf] (p4);
[control] (p5);
```

```
MODEL CONSTRAINT:
    p4=0;
    p5=0;
```

```
MODEL TEST:
p1=p3;
```


*** ERROR
Based on Group 2: Group 0 contains
inconsistent categorical value for Q6: 2

Problem:

- There are three groups (O=none, 1=item and 2=friend)
- Q6 has 5 possible values (-2, -1, 0, 1, 2)
- Mplus tries to estimate the same thresholds in each group
- But in group 0, nobody has the value 2 on Q6!

Possible solutions:

Collapse values 1 and 2 Under DEFINE: if(Q6 EQ 2) then Q6 = 1; Repeat for other variables, see multi-alt.inp

Simply run the model without categorical variables Remove categorical are s1-u5;

Group NONE

Intercepts QUALITY UNDERST	0.000 0.000	0.000 0.000	999.000 999.000	999.000 999.000
UNDERST ON CGRAPH	0.530	0.132	4.025	0.000
CONTROL ON UNDERST	-0.352	0.070	-5.022	0.000
QUALITY ON CONTROL	-0.871	0.128	-6.821	0.000
SATISF ON QUALITY CONTROL	0.391 -0.880	0.081 0.121	4.855 -7.247	0.000 0.000

Group NONE

Intercepts QUALITY UNDERST	0.017 0.347	0.169 0.160	0.098 2.174	0.922 0.030
UNDERST ON CGRAPH	0.530	0.132	4.025	0.000
CONTROL ON UNDERST	-0.352	0.070	-5.022	0.000
QUALITY ON CONTROL	-1.001	0.146	-6.850	0.000
SATISF ON QUALITY CONTROL	0.391 -0.880	0.081 0.121	4.855 -7.247	0.000 0.000

Group NONE

Intercepts QUALITY UNDERST	0.368 0.475	0.170 0.158	2.166 3.004	0.030 0.003
UNDERST ON CGRAPH	0.530	0.132	4.025	0.000
CONTROL ON UNDERST	-0.352	0.070	-5.022	0.000
QUALITY ON CONTROL	-0.359	0.117	-3.056	0.002
SATISF ON QUALITY CONTROL	0.391 -0.880	0.081 0.121	4.855 -7.247	0.000 0.000

"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw